Sharing Is Caring:

Theoretical and Computational Methods for Biology

  • Differential Equations | Computer Simulations | Machine Learning/AI | Solving Biology and Immunology Problems
  • Free tutorial
  • Rating: 3.8 out of 53.8 (10 ratings)
  • 483 students
  • 1hr 12min of on-demand video
  • Created by Subhadip Raychaudhuri
  • English

What you’ll learn

  • Mathematical and computational methods for solving biology and immunology problems
  • Ordinary and partial differential equations in biology
  • Basics of kinetic Monte Carlo simulations
  • Mathematical and computational methods for biological data analysis
  • Some basics of machine learning/AI and its applications in classification tasks
  • Biomedical / Bioengineering / Biotechnology applications
  • Know about software (for biology/immunology/biomedical problem solving)


  • Some basics of mathematics, computation and biology


Generation of large amount of data has posed challenges in modeling biological and immunological processes. There is a clear need for mathematical and computational tools that are capable of analyzing large amount of biological information. Ordinary and partial differential equations, Monte Carlo simulations, agent-based models are emerging as powerful methods for studying biological problems. This course covers some basics of these mathematical and computational methods and their biomedical/bioengineering/biotechnology applications. We also discuss data analysis based on statistical approaches such as machine learning/AI. Such computational methods allow us to carry out important classification tasks in biological and biomedical sciences.

In lecture 1, you will be introduced to ordinary differential equations (ODEs) as applied in quantitative study of biological processes. We will emphasize study of biological kinetics and biological data analysis. Among applications, we will mention kinetic parameters in receptor-ligand binding and precision medicine. We will also briefly discuss dynamical systems analysis for ODEs.

Read Also -->   MySQL Database Development Mastery

In lecture 2, you will be introduced to partial differential equations (PDEs) as applied in quantitative study of biological processes. We will emphasize study of diffusion equation and biological data analysis. We will also discuss application problems such as selecting effective antibiotics (for bacterial infection in a given patient) utilizing disk diffusion methods.

In lecture 3, you will be introduced to kinetic Monte Carlo methods through random walk and directed walk simulations. Lectures will cover computer implementations of simulation algorithms and computer programs (C; random walk simulation in MATLAB and python). Some discussion on random numbers and parallel computation.

In lecture 4, we will discuss computational modeling of infectious diseases (e.g. hypermigration of immune cells in the context of COVID-19). We will also briefly mention about biological pathway modeling.

In lecture 5, you will be introduced to machine learning and artificial intelligence for solving biological/immunological problems. We will emphasize artificial neural network (ANN) based methods for artificial intelligence. Applications will be discussed such as vaccine epitope prediction/design utilizing various machine learning/AI based methods and software.

Who this course is for:

  • Anyone interested in theoretical and computational methods and applications
  • Students interested in mathematical and computational modeling for solving problems in biology/immunology
  • Researchers interested in biomedical / bioengineering / biotechnology applications
  • Students and researchers interested in utilizing software for biological/clinical data analysis

Show less

Course content

3 sections • 5 lectures • 1h 12m total lengthCollapse all sections

Mathematical Modeling for Biology / Immunology / Bionegineering2 lectures • 32min

  • Ordinary Differential Equation (ODE) Based Mathematical Modeling16:59
  • Partial Differential Equation (PDE) Based Mathematical Modeling14:57

Computational Simulations for Biology / Immunology / Bioengineering2 lectures • 24min

  • Kinetic Monte Carlo Simulations I (Basic theory and simulation codes)10:33
  • Lecture 4: Kinetic Monte Carlo Simulations II (Biological problem solving)13:02
Read Also -->   Essential Statistics for Data Science

Machine Learning and AI for Biology / Immunology / Bioengineering1 lecture • 17min

  • Machine Learning and Artificial Intelligence16:38

👇👇👇👇 Click Below to Enroll in Free Udemy Course 👇👇👇👇

Go to Course

👇👇 See Also 👇👇

Join Us Join Us Join Us
Sharing Is Caring:

Leave a Comment

Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock